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Abstract:An artificial neural network (ANN) is commonly used as a universal function approximator which is very
useful in several problems. The main ability of an ANN is to become similar to the behavior of the system being
analyzed through examples acquired in past situations or through experiments. This paper presents a neural-based
gradient optimization (NGO) method that applies an ANN in optimization problems in order to approximate the
objective function to be minimized. According to this approach, the inputs of the ANN are the decision variables
and the output is the objective function. Thus, an NGO uses the ANN topology to adjust the decision variables to
find the optimal solution. The NGO is used to optimize a large power system without using an analytical model,
and instead only use its historical record of behavior. The NGO was tested with the standard well-known power
systems, the IEEE-14 and IEEE-118 bus. The performance of the NGO was compared with that of the traditional
gradient-based optimization method.

Key–Words:System Optimization, System Identification, Optimal Reactive Power Flow, Artificial Neural Net-
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1 Introduction
In order to solve optimization problems using tra-

ditional methods, e.g., descendant gradient [1], the
mathematic model of the function to be optimized
must be known, and it must be differentiable. Never-
theless, in several real problems, the function may not
be differentiable, or its derivative may be difficult to
compute. Thus, an optimization method that uses only
computed values of the objective function is desired.
Since an evaluation of that function normally requires
a large computational effort, it is essential that the de-
sired method can find the correct solution by using a
small number of function evaluations.

There are some methods which solve optimiza-
tion problems without derivatives, for example, by
combining desired features of the bisection method
and successive linear interpolation [2], the golden sec-
tion search [3], successive parabolic interpolation [4],
Powell’s algorithm [5], and chaos optimization algo-
rithm [6]. These methods may fail to satisfy at least
one of the following requirements: there is no guar-
antee that the local minimum found is the global one
and in certain applications where accuracy is not very
important, a faster method is preferable.

An artificial neural network (ANN) [7] is a math-
ematical model inspired by the structure and func-
tional aspects of biological neural networks. An
ANN is commonly used as a universal function ap-
proximator which is very useful in several problems,
such as, pattern recognition, nonlinear systems iden-
tification [15], control, and optimization applications

[18, 19, 17, 16]. The main ability of an ANN is to
become similar to the behavior of the system being
analyzed through examples acquired in past situations
or through experiments. Thus, an ANN becomes an
input-output mapping of the systems.

This paper presents a neural-based gradient opti-
mization (NGO) method that applies an ANN in op-
timization problems in order to approximate the ob-
jective function to be minimized. According to this
approach, the inputs of the ANN are the decision vari-
ables and the output is the objective function. Since
a system input-output map is built, by training, the
ANN can emulate the objective function of the sys-
tem. Thus, an NGO uses the ANN topology to ad-
just the decision variables to find the optimal solution,
i.e., the method proposed replaces the original gradi-
ent vector.

In order to validate the method proposed, the
NGO is used to optimize a power system. In this
problem, the decision variables are the voltage control
buses and the transformer taps, and the objective func-
tion is the sum of the load voltage deviations. Thus,
the ANN can optimize the power system without us-
ing an analytical model, and instead only use its his-
torical record of behavior. The NGO was tested with
a standard well-known power system, the IEEE-118
bus bar. The performance of the NGO was compared
with that of the traditional gradient-based optimiza-
tion method.

The rest of this paper is organized as follows.
Section 2 presents the formulation of the optimal
power flow problem. Section 3 describes the ANN
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structure and training process. Section 4 presents the
proposedneural-based gradient optimization method.
Finally, Section 5 concludes the paper and suggests
future lines of research.

2 Optimal Reactive Power Flow
Problem
Industrial equipment used in power systems are

designed for a given voltage level. If the voltage for
these systems deviates from the reference value laid
down, the performance of such items of equipment
degrades and their life expectancies tend to drop. For
instance, the torque of an induction motor is propor-
tional to the square of the terminal voltage. Thus, the
advantages of controlling the voltage level in power
system are great, but this is performed in an interval
which specifies the tolerance of voltage variations in
the power system.

Moreover, the real losses in transmission lines de-
pend on the real and reactive line power flow. Thus,
it is possible to minimize these losses by selecting an
optimum power flow with respect to real and reactive
powers, in particular, because the reactive line power
flow depends greatly on line-end voltage [20].

In a power system, the load buses (i.e., the buses
in which the voltage is not controlled) throughout the
system are designated and an attempt is made to main-
tain the voltage levels at specified values. This voltage
control is achieved by acting in the following way [9]:

• Excitation control of generators, which main-
tains good voltage control at the generator buses;

• Switched shunt capacitors and/or reactors, which
provide the capability of controlled reactive
power injection into a bus;

• Tap-changing of transformers.

What motivates these control actions is the fact
that the bus voltage is strongly related to the reactive
power injection at the bus, i.e., to add reactive power
means to increase the voltage.

The objective of the reactive power optimization
is to minimize the voltage deviations of the set of
numbers of load buses,SPQ, which can be defined
as follows

F (u) =
∑

i∈SPQ

(Vi − V
ref
i )2, (1)

subject to

PGi − PDi = Vi

∑n
j=1 Vj(Gij cos θij +Bij sin θij),

QGi −QDi = Vi

∑n
j=1 Vj(Gij sin θij −Bij cos θij),

(2)

for i = 1, . . . , n, and

V min
i ≤ Vi ≤ V max

i , i = 1, . . . , n
Tmin
i ≤ Ti ≤ Tmax

i , i ∈ NT

Qmin

Gi ≤ QGi ≤ Qmax

Gi , i ∈ NG

Sij ≤ Smax
ij , i, j = 1, . . . , n, i 6= j,

(3)

whereu is the control variable vector[Vg TK ]T , Vg,
g ∈ NG, are the generator voltage buses,Tk, k ∈ NT ,
are the transformers,Vi andV ref

i are the voltage mag-
nitude and its reference value ati-th bus,PGi andPDi

are the real powers of generation and load,QGi and
QDi are the reactive power of generation and load at
i-th bus,Gij andBij are the real and imaginary parts
of ij-th entry of bus admittance matrix,θij is the volt-
age angle between busesi andj, Sij is the power flow
in the transmission line that connects busesi andj, Ti

is the tap position ofi-th transformer,NG is the set of
numbers of generator buses,NT is the set of numbers
of transformers,n is the number of buses, and the su-
perscriptsmin andmax are denote the corresponding
lower and upper limits, respectively.

The set of2n equality constraints, Equations (2),
consists of the power flow equations (PFE) and the
set of inequality constraints, Equations (3), is used to
limit the bus voltages, transformer tap-setting, the re-
active power flow installations, and the power flow in
each transmission line.

3 Artificial Neural Networks
Learning is a feature of human beings in which

while humans carry out similar tasks, they acquire
the ability to enhance their performance. Researchers
from several areas, such as computer science, engi-
neering, psychology and neuroscience, have studied
this feature in order to explain it. This field of science
is normally called machine learning, where the learn-
ing can be classified into three categories: supervised,
unsupervised, and reinforcement learning. Supervised
learning needs a teacher to provide the input-output
training patterns. The system adapts its parameters to
generate a desired output pattern from a given input
pattern. Whenever there is no teacher, i.e. there is un-
supervised learning, a desired output for a given input
pattern is not known, and the system has to adapt its
parameters autonomously. In reinforcement learning,
the system does not know the input-output patterns;
thus, it only receives some feedback (reward or pun-
ishment) from its environment. The system uses this
feedback signal provided from its actions to adapt its
parameters.

An artificial neural network (ANN) is a training-
based system inspired by the biological neural net-
work. An ANN consists of artificial neurons fully
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connected by synaptic weights. Each neuron responds
to stimuli, such as a biological neurons, and provides
a response by means of an output signal. The informa-
tion or knowledge of the ANN is stored in the synap-
tic weights. The learning of the ANN is performed in
the training phase, where the weights are adjusted ac-
cording to a knowledge base (a set of patterns) which
represents the historical or behavioral pattern to which
the ANN will approximate.

The artificial neuron was mathematically mod-
eled by McCulloch and Pitts [10], which described
a logical calculus for ANNs. McCulloch and Pitts
showed that with a sufficient number of neurons and
synaptic connections adjusted properly and operat-
ing synchronously an ANN would compute any com-
putable function. Fifteen years later, Rosenblatt [11]
created a new method for supervised learning, which
is called the perceptron convergence theorem. After
many years which saw only restricted further stud-
ies, Rumelhart et al. [12] created the backpropaga-
tion algorithm, the most popular learning algorithm
for training, which became the most widely-use of the
ANNs. Since then, research into and applications of
ANNs have increased in different areas [8].

There are several models and paradigms of ANNs
[7], for each of which there are recommended appli-
cations. In this study, the feedforward model [11] is
used with the supervised training. For the method pro-
posed, the problem to be optimized is simulated and a
set of input-output patterns is formed. The ANN in-
puts are the decision variables and the output is the
value of the objective function to be optimized.

The feedforward model consists of layers of neu-
rons, each of them having its neurons fully connected
to those of the next layer. Figure 1 shows an ANN
with N inputs,Nh neurons in the hidden layer, and
one output. The signals applied at the input layer are
propagated throughout the network structure until the
output layer. Thus, the ANN provides an output signal
by the interactions of all neurons.

The signals which arrive in each neuron are
weighted by coefficients, called synaptic weights;
then, the weighted signals are summed by the neuron.
Finally, the neuron output, is defined by an activation
function which provides a high value if the weighted
sum of the output is higher than a bias; otherwise, the
output is not activated, and thus produces a low value.
For an ANN with only one output, such that of Figure
1, the neuron output,y, can be defined as

y = ϕ(v), (4)

whereϕ(·) is the activation function, which limits the
amplitude of the output neuron, and

Figure 1: Model of a feedforward neural network
model

v =
Nh∑

i=1

wi xi − θ, (5)

wherewi is thei-th synaptic weight of the output neu-
ron,θ is the bias of the output neuron,Nh is the num-
ber of neurons of the hidden layer, and

xi = ϕi(vi) (6)

is the output of thei-th neuron of the hidden layer,
whereϕi(·) is the activation function of

vi =
n∑

j=1

wij uj − θi, (7)

wherewij andθi are thej-th synaptic weight and the
bias of thei-th neuron of the hidden layer, anduj is
thej-th ANN input.

Normally, the normalized amplitude range of the
neuron output is the closed unit [0,1] interval or [-
1,1]. The activation function used in this study, sig-
moid function, is the most commom form of activa-
tion function used in ANNs. The sigmoid function is
an increasing function that shows a balance between
linear and nonlinear behavior [13]. The sigmoid func-
tion used in this study is the logistic function [14],
defined as follows

ϕ(v) =
1

1 + exp(−k v)
, (8)

wherek is the slope parameter of the logistic function.
By varyingk, it obtains logistic functions with differ-
ent slopes fork = {0.4, 1.0, 2.0}, as shown in Figure
2.
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Figure 2: Logistic functions with several slopes

3.1 Training of Artificial Neural Networks
The application of ANNs greatly increased af-

ter the backpropagation training algorithm [12] was
introduced. ANN training, also called ANN learn-
ing, is performed by using samples (set of patterns)
taken from the environment represented by input-
output pairs. In the learning process, the ANN adapts
its parameters by means of an algorithm to generate
the output patterns desired from given input patterns.
The set of patterns is defined by

Ψ = {(ui,di)}, i = 1, . . . , P (9)

where(ui,di) is i-th pattern,ui is thei-th input vec-
tor anddi is thei-th output vector desired. In ANN
training, a signal is applied and one output signal is
obtained; if this output is other thandi there is an er-
ror and the synaptic weights must be adjusted. The
backpropagation algorithm deals with the training as
a non-constrained global optimization problem, where
the quadratic error function, to be minimized, is de-
fined by

E =
1

2

m∑

i=1

(di − yi)
2 (10)

whereydi andyi arethei-th desired and current ANN
outputs, andm is the number of ANN outputs. The
patterns are presented sequentially until the existing
difference between the ANN output and the desired
output, considering allP patterns, is greater than an
error. The adjustment of thej-th weight of thei-th
neuron is defined by

∆wij = −η δi xi, (11)

where the minus sign accounts for gradient descent
in weight space, i.e., following a direction for weight
changes that reducesE, Equation 10, and

δi = ϕ′(vi) (di − yi) (12)

for thei-th output layer, and

δi = ϕ′

i(vi)
∑

j

δj wji (13)

for the i-th neuron of a hidden layer, where the index
j refers to neurons in the next layer in which thei-th is
connected. Theη coefficient, called the learning rate,
determines the length of the step under the quadratic
error function.

4 Neural-Based Gradient Optimiza-
tion
The ANN used in this methodology has two spe-

cific goals: to emulate the system, a model for which
is not available, and to optimize the performance of
this system using its own neural topology. In the opti-
mization problem, the neural network inputs represent
the decision variables and the neural network outputs
represent the objective functions. The neural network
output can be described as follows

y = F (u), (14)

wherey stands for the ANN output, that is, the ob-
jective function, andu is the ANN inputs, that is, the
decision variables.

In a minimization problem, in which the descen-
dant gradient method is used, the decision variable ad-
justments, for each ANN output that represents an ob-
jective function, are made as follows

u(k + 1) = u(k)− η∇F (k), (15)

whereu(k) is the decision variable vector in thek-
th iteration,∇F (·) is the gradient vector of theF (·)
objective function, andη is the step underF (·). The
adjustment of thei-th decision variable is made as fol-
lows

ui(k + 1) = ui(k)− η
∂F

∂ui
. (16)

The partial derivation of the ANN output, Equation
(14), with respect to the decision variableui is not di-
rect, becausey is a function ofv, Equation (4). Thus,
the differential of outputy can be expressed as

dy = ϕ′(v) dv, (17)

and the differential ofv, Equation (5), can be ex-
pressed as follows

dv =
Nh∑

i=1

wi dxi. (18)

Up to this point, the differential of outputy can be
expressed as follows
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dy = ϕ′(v)
Nh∑

i=1

wi dxi, (19)

where

dxi = ϕ′

i(vi) dvi, (20)

is the differential of the outputxi of the hidden layer
neuron, Equation (6), andvi, Equation (7), is a func-
tion ofu1, u2, . . . , un, which corresponds to the ANN
inputs, for an ANN such that of Figure 1. Thus, the
differential dvi with respect to thej-th input can be
expressed as follows

dvi = wij duj . (21)

Finally, replacing Equations (20) and (21) into Equa-
tion (19), the differential of outputy results in

dy = ϕ′(v)
Nh∑

i=1

wi ϕ
′

i(vi)wij duj . (22)

The partial derivation of the objective function,F , i.e.,
the ANN outputy, with respect to thej-th decision
variable,uj , results in

∂F

∂uj
= ϕ′(v)

Nh∑

i=1

wi ϕ
′

i(vi)wij . (23)

Thederivation of functionϕ(·) with respect tov is

ϕ′(v) =
k e−kv

(1 + e−kv)2
. (24)

Thus,after training, the neural network is used, in real
time, for emulating the system and adjusting the deci-
sion variables to optimize the system. Thus, the gra-
dient vector of neural topology, instead of the gradi-
ent vector of the system original model, is used to ad-
just the decision variable. This process is followed for
each objective function which is represented by ANN
output. The main advantage of NGO is that the gradi-
ent method can be used in problems in which the gra-
dient vector is unavailable. This is possible by simu-
lating the system and building a set of samples which
describes the behavior of the system. Thus, this set
is used to training the ANN and NGO can be used to
optimize the performance of the system.

5 Experimental Studies
This section presents studies which used the

IEEE-14 and IEEE-118 bus systems. In order to adapt
the power system variables to the neural network do-
main, a linear normalization was applied to those used

as neural network inputs and outputs. The valida-
tion of the method proposed was performed by exper-
iments with a gradient-based algorithm [1].

The IEEE-14 bus system, Figure 3, represents a
portion of the American Electric Power System (in
the Midwestern US) as of February, 1962. The sys-
tem consists of 5 synchronous machines, 3 of which
are synchronous compensators used only for reactive
power support. This system is widely used for volt-
age stability and low frequency oscillatory stability
analysis. In the IEEE-14 bus, a three layer MPL with
the backpropagation training algorithm was used. The
controlled buses (PV) were used as the four neural
network inputs. The neural network output was the
sum of load bus (PQ) deviations from the reference
voltage, Equation (1). Table 1 shows the optimization
results after the ANN training. The second and third
columns show the real power losses from gradient-
based (GB) and neural-based gradient optimization
(NGO) optimization methods, and the fourth and fifth
columns show the PQ voltage deviations from GB and
NGO methods.

Figure 3: IEEE-14 Bus System

GB and NGO spent 4 iterations to stop the opti-
mization process. In both real power loss and PQ volt-
age deviation, GB and NGO reached similar results.
The main purpose of the NGO method was reached,
i.e., the trained ANN acquired sensitivity to the ob-
jective function with respect to the decision variables.
This claim could be concluded because the PQ voltage
deviation by NGO method decreased at each iteration,
Table 1.

The IEEE-118 bus system, Figure 4, represents a
part of the American Electric Power System (in the
Midwestern US) as of December, 1962. The system
consists of 41 synchronous generators and 27 syn-
chronous compensators with 186 branches. In this
system, a three layer MPL with the backpropagation
training algorithm was used. The controlled buses
(PV) and the regulating transformers were used as the
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Table 1: Results of IEEE-14 system optimization
Real Power Loss PQ Voltage Deviation

Iter. GB NGO GB NGO

0 7.91 7.91 0.6022 0.6822
1 7.81 7.91 0.4704 0.5301
2 7.80 7.92 0.3675 0.4075
3 7.80 7.92 0.2876 0.3281
4 7.80 7.93 0.2277 0.2549

neural network inputs. Regarding the size and com-
plexity of this system, several neural network topolo-
gies were trained. The neural network output was the
sum of load bus (PQ) deviations from the reference
voltage, Equation (1). The following subsections de-
scribe the ANN training and the optimization process
for the IEEE-118 bus system.

Figure 4: IEEE-118 Bus System

5.1 Neural Network Training
Given the size and complexity of the IEEE-118

bus bar system, several rounds of training with differ-
ent topologies were performed in order to find, empir-
ically, the best one. The main performance criterion
was validation using the mean square error (MSE).
The set of examples consisted of 5,000 training exam-
ples, 1,000 validation examples, and 1,000 examples
to test the artificial neural network (ANN).

All training was performed in 1,000 epochs in or-
der to find the best NN weights, i.e., those which pro-
vide the minimum validation error. For this purpose,
whenever a configuration of weights reached a mini-
mum validation error, these parameters were saved.

Table 2 shows the MSE of the set of training, val-
idations, and tests for all topologies (Top.). The sec-
ond and third columns show the mean and final MSEs
from the set of training, the fourth to sixth columns
present the mean MSE, standard deviation (SD), and
minimum MSE from the set of validations. In the

sixth column, the epoch in which the minimum MSE
was reached is shown in brackets. The seventh column
shows the MSE from the set of test (after training).

The difference between the mean and final MSE
of the training set, the second and third columns in
Table 2, is important as this shows the stability of the
weight adjustments, i.e., the smaller this difference
was, the faster the backpropagation algorithm reached
an MSE value similar to the final one. A topology
with this feature is useful for on-line training, because
it may converge to a promising set of weights as fast
as possible. The mean MSE, the SD, and the mini-
mum MSE of the validation set indicate what the per-
formance of the ANN is with respect to examples not
presented in the weight adjustment process. The SD
shows how the MSE varied with respect to the weight
adjustments, i.e., the lower the SD, the smaller the im-
pact of the weight adjustments was. Of course, SD
analysis must be associated with the mean MSE from
the validation set. A low mean MSE demonstrates a
good ability to generalize capacity when this value is
similar to the minimum one (sixth column). Ideally,
the SD must be low and the minimum MSE must be
close to the mean one. This shows that the ANN may
achieve a low error rate almost throughout the training
process. The MSE of the set of tests (last column) is
also a very useful performance indicator. Ideally, the
test error should be close to the minimum MSE of the
validation set. In other words, this indicates that the
set of weights reached the level of showing its ability
to generalize for unknown examples is good.

Figure 5 shows the MSE of the training and vali-
dation sets for topologies with only one hidden layer
of each of 5, 20, 50, and 80 neurons. The profiles of
Figures 5(a)-(d) reinforce the analysis above, from Ta-
ble 2. Figures 5(a)-(b) present two stable topologies as
can also be seen in the lines of the topologies with one
hidden layer of 5 and another of 20 neurons (low SD
and minimum MSE close to the mean). Nevertheless,
the topology with hidden layer of 20 neurons, Figure
5(b), reached the smallest MSE of the validation set.
Table 2 and Figure 5 show that topologies in which
the hidden layer had 40 or more neurons decrease the
training performances. With these topologies, all per-
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Table 2: MSE and standard deviation (SD) (×10−3) for IEEE-118 bus bar system
Training Validation

Top. Mean Final Mean SD Min. Test

5 3.5337 3.4300 4.0615 0.3236 3.9370 (231) 3.7487
10 2.3223 2.1450 3.3713 0.3873 3.1650 (088) 3.3949
20 1.9334 1.4910 3.5356 0.3764 2.9850 (157) 3.3417
30 1.6583 1.2200 4.1310 0.4427 3.3830 (076) 4.5169
40 2.0137 1.5980 5.0917 0.8992 3.6400 (124) 6.1511
50 2.0249 1.3880 5.7870 0.9739 3.5420 (093) 6.6508
60 2.3069 2.1680 6.7219 1.4171 4.7270 (156) 8.8947
80 8.8512 3.3580 14.9753 5.7790 5.3110 (028) 11.7778
100 25.8993 4.8640 29.3427 19.0055 5.8020 (019) 11.0851

formance criteria became worse (see the mean MSE
of the validation set, and the SD and MSE of the set
of tests). Starting with the topology with a hidden
layer of 50 neurons, Figure 5-(c), the MSE of the val-
idation set increased quickly after its minimum value
was reached (epoch 93 for the hidden layer with 50
neurons). The topologies with one hidden layer of 80
and another of 100 neurons (see Figure 5-(d) for the
former) were unstable and all their MSEs were very
high. Figure 5-(d) shows that the topology with the
hidden layer of 80 neurons was very sensitive to the
weight adjustments. Thus, the MSEs of the training
and validation sets varied greatly throughout training.

Given the analysis above, it is possible to con-
clude, especially from Table 2, the performances of
the topologies with hidden layers of 10, 20, and 30
neurons were similar to each other. The topology cho-
sen to simulate the IEEE-118 system was that with
a hidden layer of 20 neurons, because it reached the
smallest MSE in the validation and test sets (sixth and
seventh columns). This topology reached its lowest
MSE in the validation set at epoch 157 – see sixth
column in Table 2. For this optimum set of weights,
deemed the best ANN topology, the MSE of the test
set was 3.3234×10−3.

Table 3: The topology of the best ANN in the test set
Error Magnitude

Mean absolute error 0.0632
SD of absolute error 0.0515
Maximum absolute error 0.5021

Table 3 shows the results obtained by the best
ANN topology given a test set with 1,000 exam-
ples. The maximum absolute error was high, 0.5021
(50.21%); nevertheless, as can be seen in Figure 6, it
was only this error that reached a high value. Almost
all of the absolute errors were smaller than 0.1 (10%),
as can be seen from the mean and SD of the absolute

error in Table 3. This claim is also reinforced in Fig-
ure 7 which presents a normal distribution of the error
of the test set and confirms that almost of the errors
were close to zero. For a large and complex system,
such as the IEEE-118 bus bar, these results may well
be acceptable. Thus, the topology with hidden layer
of 20 neurons was approved in the training and can be
used to simulate the IEEE-118 system.

Figure 6: Absolute error bar of the test set for the
topologyof the best ANN

5.2 Simulating and Optimizing the IEEE-
118 System

This section presents the experiment with the
NGO and the descendant gradient method [1], in
which the target is to minimize the PQ bus deviations
from a reference value. For both methods, the con-
stantη, Equation (15), was set to 0.5. The real power
loss was also considered when analyzing the results.
The stop criterion was that the mean variation of the
objective function at the last three iterations is less
than 1%. The reference voltage for the PQ buses was
1 pu.

Table 4 shows the results of the experiment. The
second and third columns present the real power
losses from the gradient-based (GB) and the neural-
based gradient optimization (NGO) methods. The
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ogyof the best ANN

fourth to sixth columns present the sum of PQ volt-
age deviations: column 4 by GB, column 5 by PFE
in the NGO after adjusting the decision variables, and
column 6 by the ANN in the NGO.

The GB spent only three iterations to stop the op-
timization process and the NGO stopped it after seven
iterations. Given that the objective of the optimization
process, the PQ deviations, NGO reached the best re-
sult, with a value 43% smaller than that of the GB. The
real power loss from NGO was 1.83% larger than that
of the GB method. This was an acceptable result be-
cause more energy dispatch was necessary to decrease

the PQ deviations.
Another important result was the difference be-

tween the system output, column 5, and the ANN out-
put, column 6, in Table 4. Although the NGO reached
a promising result, the sum of PQ deviations produced
by the ANN was very different from the real one, col-
umn 5 in Table 4. It may be argued that the set of train-
ing examples was not representative enough. Never-
theless, as to main purpose of the NGO the objective
was reached, i.e., the trained ANN acquired sensitiv-
ity to the objective function with respect to the deci-
sion variables. For this objective, the set of examples
was enough. To provide the sum of PQ deviations as
close as possible to the real one, the size of the set of
examples must be increased.

6 Conclusions
This paper presented a method that uses an arti-

ficial neural network (ANN) for modeling and opti-
mizing complex systems. The new neural-based gra-
dient optimization (NGO) method employs an ANN
to replace the analytic modeling system with one that
simulates and trains. Thus, the NGO deals with the
topology of a trained ANN for optimization purposes,
by replacing the gradient vector of the original system.
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Table 4: Results of IEEE-118 system optimization
Real Power Loss PQ Voltage Deviation

Iter. GB NGO GB Sys. Output ANN Output

0 158.11 158.11 0.0529 0.0529 0.0892
1 157.32 167.51 0.0388 0.0258 0.0761
2 157.64 164.17 0.0324 0.0210 0.0723
3 157.97 162.09 0.0275 0.0184 0.0704
4 — 159.31 — 0.0169 0.0690
5 — 159.23 — 0.0162 0.0682
6 — 159.40 — 0.0158 0.0673
7 — 160.10 — 0.0157 0.0666
8 — 160.86 — 0.0156 0.0659

The IEEE-14 and IEEE-118 bus systems were
usedto evaluate the performance of the method pro-
posed. The voltage deviation, Equation (1), was
used as the objective function to be minimized. Sev-
eral training procedures with different ANN topolo-
gies were performed and analyzed in order to choose
the best one. The experiments to minimize the load
voltage deviations of the systems were conducted to
test and discuss the performance of the method pro-
posed. In the experiment with the IEEE-118 bus
system, the NGO outperformed the classic gradient-
based method.

In the experiments, NGO tended to minimize the
objective function and reached a value smaller than
that of the gradient-based method. NGO needed more
iterations to stop the search than the gradient-based
method; nevertheless, the processing time spent by an
ANN is very low. Another important result was that
the ANN output error (the voltage deviations) in the
experiments was higher that of the set of test – see the
last two columns in Table 4. This problem was prob-
ably caused due to the size of the set of training and
the complexity of the IEEE-118 system. It is possible
that by increasing this size, the errors will tend to de-
crease. Nevertheless, this fact is not enough to affect
the NGO performance adversely, because even when
the output errors were higher than those expected, the
ANN acquired sensitivity to the system. The sugges-
tion for this claim is that NGO followed the path to the
(local/global) minimum – see theSys. Outputcolumn
in Table 4.

Given these results, the supposition may be made
that ANN topology can be applied to other types of
optimization problems, where the gradient vector is
difficult to calculate or needs a high computational ef-
fort. In future research studies, the ANN topology
might also be used in hybrid systems, for example,
combining an NGO with simulated annealing in order
to create a stochastic search algorithm.
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